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Introduction : Additive ergodic optimization

Definition

® We consider a (discrete time) topological dynamical system
(X, f) compact, f:X — X continuous
® We consider also a continuous observable
¢ : X — R, continuous

® The Birkhoff average along a finite orbit

n—1
Adl) = Y60 fila
=0

® The ergodic minimizing value of ¢

¢:= lim 1nffz¢0f1

n—+oozxzeX n
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Introduction : Additive ergodic optimization

Questions

® How to compute the ergodic minimizing value ?

¢:= lim 1nf—z¢) iz

n—+oozxzeX N

Remark : minx(¢) < ¢ < maxx(¢)

® [s there a notion of optimal trajectory ? A possible definition
(forward optimality) coul be

sup\qu 8)o fi( \—sup\2¢ f(2) = nd| < +oo

n>1
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Introduction : Hyperbolic dynamical system and SFT

Example of an hyperbolic map : the Arnold map
X =T = R?/Z? the two torus

1=l mea
3+\/5>1>/\—;:3_2

S

AT =

The translation by (aq,as) is
not hyperbolic

0 Xo 1 x|z +tan 9
f ul = |y + tas mod Z

Remark A C! perturbation of the Arnold map is hyperbolic;
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Introduction : Hyperbolic dynamical system and SFT

Another example of an hyperbolic map
Directed graph G = (V, E),

vV ={1,2,3}
E={1-11—-22—2,..}
1 1 1
@ M=10 0 1
1 01
The subshift of finite type SFT

Y= {{E = (l'k)kGZ X € V, T — .’Ek+1}
Remark In fact the Arnold map and the SFT are very similar
dynamics : they are both hyperbolic
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Introduction : Minimizing and Gibbs measures

We consider a topological dynamical system (X, f) and and a
continuous observable ¢ : X — R.

Definition
® An invariant measure y is a probability measure on X such that

V B Borel, u(f’l(B)) = u(B)
VheCYX,R), hofdp hd,u

Remark An hyperbolic system has many invariant measures. For
instance the Arnold map preserves the normalized Lebesgue measure
on T?

A= E ﬂ det(A) =1 /h o fJacdLeb = /h dLeb

(change of variable)
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Introduction : Minimizing and Gibbs measures

Recall The ergodic minimizing value

¢:= lim inf —Zqﬁof’

n—+oozeX N

Proposition We will see soon
¢ = min { /(,zb dp @ p is an invariant mesure }

Definition

® A minimizing measure is an invariant measure satisfying
/ pdp=¢
® The Mather set is the compact invariant set
Mather(¢) := U {supp(u) : 4 is a minimizing measure }
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Introduction : Minimizing and Gibbs measures

Definition A Gibbs measure at temperature 37! for the observable
¢ : X — R is an invariant measure that gives a specific mass to
cylinders of size n.

® A cylinder of size n is
By(z,€) == {y € X : d(f*(2), f*(y)) < ¢, Vk € [0,n— 1]}

® the Gibbs measure at inverse temperature 3
sl )] = s exp (- BZ¢> o (@)
AlLZn Z(n, B
® Z(n,B) := exp(—nBepp) is a normalizing factor

n—1
—ﬂqSB lim inf 10g< Z eXp(—ﬁzébofk(m))
k=0

n—+oo K, : covering N
" & zeb,

N—

Remark pg gives a larger mass to configurations with low energy
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Introduction : Minimizing and Gibbs measures

Question What is the relationship between minimizing measures and
Gibbs measures 7

Theorem We will see that, by freezing an hyperbolic system,
B — 400, the Gibbs measure g tends to a “selected” minimizng
measure with maximal entropy among all minimizing measures.

Observation Some minimizing measures corresponds to “ground
states”, to a description of congigurations with lowest energy
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Introduction : Mané conjecture for SFT

Recall The Mather set
Mather := U {supp(,u) : 4 is a minimizing measure }

Question What is the structure of the Mather set ? Is it small and
reduced to a periodic orbit ? Is it a set with large complexity (or
entropy) 7 Could it be the whole set X 7

Mané Conjecture For any hyperbolic dynamical system, the Mather
set is reduced to a periodic orbit for generic smooth observable.

Contreras Theorem For every subshift of finite type, for every
Holder observable ¢ : X — R, for every perturbation € > 0, there
exists a periodic orbit O, such that

¥ i=¢+ed(,0)

has a unique minimizing measure, which is the measure supported by

O
B card Z O
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Introduction : Mané conjecture for SFT
Obvious example Every compact invariant set A C X can play the
role of a Mather set
é(x) :=d(x,A) ¢ =0, pisminimizing < supp(u) C A

Another example Assume the Mather set satisfies the
“subordination principle” and contains a periodic orbit O then

V= ¢+ ed(z,0)
has a unique minimizing measure supported in O

Proof

© [Vdu> [edn = b=
® The Mather set satisfies the subordination principle : every
measure supported in the Mather set is minimizing

® 0o is minimizing : ¢ < [ déo = [¢pdpo = ¢
@ if ;1 is Y-minimizing [Ydu =1 =¢ < [¢pdp

E/d(no)du:/(wftb)duﬁo = supp(p) C O
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Introduction : Frenkel-Kontorova model
Simplification The manifold is the d-torus M = T?, the tangent
space is TM = T¢ x R, V¥ (z,v) € TM, x = position, v = velocity

Definition
(1) A Tonelli Lagrangian is a function L(z,v) : TM — R which is
C?, periodic in x, and uniformly strictly convex in v

0?L
Ja >0, Ve € M, Hess(L)(z,v) := 502
v

(2) The action of a C! path v : [a,b] — M is the quantity

(z,v) >«

b
Ay) == / Lix(t).7/(t)) dt

(3) The Lagrangian flow is the flow on the tangent space
! (z,0) : TM — TM, 74.(t) =pr'o®} (z,v),
d

%’y‘r,v - PTZ o (I)E (.’ﬂ, 'U)

where 7, is a a local minimizer of the action :

AYew) <A®), Vv:la,b — M, C" close
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Introduction : Frenkel-Kontorova model

Example M =T¢ TM =T¢ x R? U : M — R a C? periodic
function, A € R% a constant representing a cohomologycal constraint

1
L(z,v) = S0l = U(a) = A+

Recall The action of a C'! path v : [a,b] — M is the quantity

Discrete Aubry-Mather A discretization in time of a Laganrgian
flow. Let 7 > 0 be a small number

JU)—7’U(Jc)—/\-(y—av)

Ar(z,y) = TL(x, Y
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Introduction : Frenkel-Kontorova model

Frenkel-Kontorova mode! A discretization in time of the inverse
pendulum : d =1, M =T, M =R — M is the natural covering space

TK

- (1 — cos(Qﬂ'x)) - My — )

1
ET(x’y) = Ely_‘ﬂz +

E- is called an interaction energy

Definition A minimizing configuration (xg)gez, xx € R, Vm € Z,

Vn>1
n+n—1 m+n—1 y —
m m
> Er(wkmei) <Y Bk ki), V
k=m k=m Ym+n = Tm+n
Xo X Xy X3 Xy Xs XX X

AR IAA R R R

)?o Y Va2 Vs s Ys Vs Y7 ys
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Introduction : Frenkel-Kontorova model

Dynamical system (X, 0) where 3 is the space of minimizing
configurations © = (2)rez, and o : ¥ — 3 is the left shift

o(x) =y = (Yr)kez © Y = Tht1, VKEZ

Definition The ergodic minimizing value of E, or the effective energy

n—1

. .
E.= lim — inf E E(zp, xp41)
n—400 M T0,T1,...,Tn P

Proposition We will see that one can define a discrete Lagrangian
dynamics @7, -(z,v) : T x R — T x R such that
E, =inf { /E(a:,:c + 7v)du(x,v) : pis @, minimizing }

Remark Although ®; - is not hyperbolic, a similar theory can be
applied. Numerically by discretizing the space, we get back to subshift
of finite type
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Introduction : Linear switched systems

Question We studied in different examples the notion of ergodic
minimizing value of a scalar function ¢ : X — R. If f is multivalued
what can be said ?

Definition A (discrete in time) linear switch system is a dynamical
system of the form
Vg1 = Ao, VE>0

where vj, € R? represents the state of the system, A, € Mat(R, d) is a
square matrix, and vg4; is the state at the next time. The action Ay
can be chosen either by an external observer or by an automatic
dynamical system (X, f)

Definition We consider a topological dynamical system (X, f), a
continuous matrix function 4 : X — Mat(R, d), and a matrix cocycle

Afz,n) == Ao "~ N(z) - Ao f(x)Alx)
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Introduction : Linear switched systems

Question One of the main problem in control theory is to stabilize a
system, that is to find a trajectory = € X such that

[AGz,n)|| = [[Ao f"~ (x) - Ao f(z)Ax)l| <1

We are left to study the worst case, that is to compute the following
characteristic of the system

Definition The mazimizing singular value of a cocycle

g1(A4) := lim sup | Az, n)|| /™

n—+00 .

Actually we prefer to introduce the mazimizing Lyapunov exponent

A = log(61(A) = lim 1suplog(||A(m )

n—-+oo n
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Introduction : Linear switched systems

Definition A cocycle of order 1 over the full shift :

(1) a finite set of matrices A := {My, -, M,}

(2) the full shift ¥ = AN = {(E = (Ak)kZO : Ay € A, Vk > 0}
o : 3 — X is the left shift

(3) the cocycle of order 1 A(x) = Ag if x = (Ag)r>0
A(CE,TL) = An,1 cee A1A0

Example A cocycle of order 1 over a set of two matrices

e ] el ]

0 1 V2l o1
Although
— T n|l/n _ 1 n|l/n _
p= lm |MPIYT =l Mg =1
we will see

lim sup |An—1 - 'A1A0||1/n >1
n+00 4. 1 AL Ap
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Additive cocycle : Basic definitions again

Definition We consider

(1) (X, f) a topological dynamical system, X compact, f: X — X
continuous

(2) ¢: X — R a continuous observable

(3) the ergodic minimizing value of ¢

n—+oozeX n

n—1
¢:= lim inf qubofk(x)
k=0

Question Can we say something for the lower bound of

n>1lzeX

n—1
inf inf {quofk(l‘) —nq@}
k=0
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Additive cocycle : Basic definitions again
Definition A coboundary is a special observable of the form
$=uof—u
for some continuous function u : X — R

An easy example Assume ¢ is a coboundary ¢ = uo f — u then

$»=0 and supsup‘z¢0fk ) —ng| < +oo
n>lzeX

Proof The Birkhoff sum can be evaluated easily

n—1
Y doff=uofr -

k=0

n—1
sup | Y- ¢ 0 /(@) < 2lullo
k=0

reX

6= lim 1nffz¢ f’C

n—+oozxeX N
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Additive cocycle : Gottschalk-Hedlund theorem

Definition A minimal system (X, f) is a topological dynamical
system so that every orbit is dense

Vee X, {fr(z):n>0}=X

Example The hull of the Fibonacci sequence
@ the substitution : 0 — 1, 1 — 10

0—1—10—10.1 — 101.10 — 10110.101 — 10110101.10110
wo =0, w1 =1, Wpt1 = WpWn-1 — wWeo €90, 1}N
® the hull
Woooo = 0% | wee € B := {0, 1}*
X = ﬂ {ok(woooo) k> n} (D))

n>1

® (X,0) is a subshift of (X, 0) semi-conjugated to the rotation on
the circle of rotation number

1++5
2

largest eigenvalue of [(1) ﬂ
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Additive cocycle : Gottschalk-Hedlund theorem

Theorem(Gottschalk-Hedlund) Let (X, f) be a minimal system and
¢ : X — R be a continuous function. Assume there exists a point
zg € X such that

n—1

sup | > 6o f(wo)| < +o0

n2l o

Then there exists u : X — R such that
$=uof—u

(We say that ¢ is a coboundary)
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Additive cocycle : Gottschalk-Hedlund theorem

Definition A function v : X — R is said to be u.s.c, upper semi
continuous at zg € X if

lim sup wv(z) < v(zg)
=0 z€B(z0,€)

A function v is said to be Ls.c. lower semi continuous if

liy, ) 2 e
Proposition
® the supremum of a sequence of continuous functions is 1.s.c.
® The infimum of a sequence of continuous functions is u.s.c.
Proposition
® yisus.c. & {v > A} is closed for every A

ey is ls.c. & {u < A} is closed for every A
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Additive cocycle : Gottschalk-Hedlund theorem
Proof of Gottschalk-Hedlund Recall we have assumed
Ry —sup‘ E po fF(xo ‘<+OO

n>1

n—1
©® We first observe that  sup sup ‘ Z pof* (m)‘ < 2Ry
zeX n>1 —0

let x € X, n>1, e>0 fixed. By minima-

£(x,) lity there exists k > 0

n—1
}:hﬁmﬁw)f¢0f”*@wl<e

n+k—1

§:¢of”k }j ¢of
- Z¢ o f*(o)
=0
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Additive cocycle : Gottschalk-Hedlund theorem

Proof of Gottschalk-Hedlund

® We define two functions

n—1 n—1
u::suquﬁof’c v::rigﬁzd)ofk
k=0 = k=0

n>1

® uis l.s.c. visu.s.c.

@ the computation of u o f and v o f introduces a shift in the
summation

n n—1
uof:supz(;bofk uof+¢:supz¢ofk§u
nzlk:l n22k:0

n n—1
:. k :' k‘>
vo f ;Lgfl;qbof vo f+¢ ;g%;mf > v

Ph. Thieullen Introduction to Ergodic Optimization 35/101



Summary Introduction Additive cocycle Zero limit Discrete Aubry-Mather Bibliography

Additive cocycle : Gottschalk-Hedlund theorem

Proof of Gottschalk-Hedlund
@ we just have proved : wo f+¢ <u vof+o>v
® define w:=v —u, then wo f > w
@ w is upper semi continuous — w attains its supremum
® let z, be a point maximizing w
@ then X, := {z € X : w(z) = w(x,)} is invariant by f
@ X, is closed again by u.s.c. of w
® X. = X by minimality w = w(z,), Ve € X

® v — u = const = v and u are continuous

wof+d=u voftp=v
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Introduction : Gottschalk-Hedlund theorem

Remark The assumptions in Gottschal-Hedlund implies ¢ = 0

n>1 n—+oozeX n

n—1
sup| 300 fH(wo)| < 400 = b= lim mf—Zq& o f*(x)
k=0

Question Is the converse true?

Definition An additive cocyle is nondefective from below if there
exists a constant C' such that

n—1

VreX,Vn>0, Y ¢of(x)=np+C
k=0

Proposition If (X, f) is minimal and ¢ is continuous nondefective
from below then

p=uof—utd

for some continuous v : X — R
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II. Additive ergodic optimization on
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Additive cocycle : Minimizing measures and Mather set

Lemma If (a,),>0 is a sub additive sequence
Qmtn < Ay + Ay, Ym,n >0
then

. an, .. an
lim — = inf —
n—+oco N n>1l n

Remark The following sequence (ay,)n>0 is supper additive

. B(
=l Z #o s
Corollary The limit in the definition of ¢ exists

lim —mquSofk —suplnf—qu o f*(x)

n—+4oo N r€X
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Additive cocycle : Minimizing measures and Mather set

Definition We recall that a probability measure is invariant if
Vh e C'X,R), /hofdu = /hdu

Observation Let M(X, f) be the set of invariant measures
1 n—1 1 n—1

_ L k S inf - k

o /(n’;mf )du_xlgmsz

inf ¢dp > sup inf —Zqﬁofk

HEM(X,[) n>1T€X

Proposition Actually

inf /qﬁd,u—sup mf—ZqSofk

HEM(X,f) n>12€

A measure realizing the infimum is called a minimizing measure
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Additive cocycle : Minimizing measures and Mather set

Proof
@ for every n > 1, the infimum in mf — Z ¢ o f"j ) is realized by

a point x,
® let p, be the empirical measure along the trajectory

1 n—1
== > 65k ()
k=0

n—1

® by definition /qb dp, = 1nf — Z b o fF(x)

@ The space of probability measures is weak™ compact, there exists
a subsequence of (uy,),>1 converging to some probability measure
. We check that p is invariant

: - k
/W—nkﬁloo;gﬁmzw
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Additive cocycle : Minimizing measures and Mather set

Definition We recall
Mather := U {supp(/i) : p is minimizing }
Proposition The Mather set is compact
Mather = supp(u) for some minimizing measure p

Question What is the structure of the Mather set 7 Is it a big set, a
small set 7 Can we find on the Mather set optimal trajectories « that
is

sup‘z¢0fk ) —np| < +oo

n>1
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II. Additive ergodic optimization on
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Additive cocycle : Subshift of finite type

Definition We consider here a one-sided subshift of finite type
® A:={1,2,---,r}is a finite set of states

® M is a r X r square matrix describing the allowed transitions

M(i,j) € {0,1} M(i,j) =1 < i — jis an admissible transition

o X — {(xn)nzo :Vn>0, 2, €A, M(zy,Tn41) = 1}
X is called a subshift of finite type SF'T. The left shift f: X — X
x = (xg,21,22,...) = y=f(x)=(x1,22,23,...)
[ )

X equipped with the product topology is compact metrizable
d(.’t,y) =e " & o =Yo, ' yTpn—1 = Yn—-1 and Tn 7£ Yn
® we assume M is semi irreducible

VieA, 35 e A, M@i,j)=

1
VieA, JieA M@ij)=1
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Additive cocycle : Subshift of finite type

The doubling period

1 fiz—2xmodl

. is semi conjugated (up to a
b countable number of points) to
' the full shift

Z X = {a, )"

- Here the hyperbolicity is related
0 x, 1/2 1 to the fact that

(@) > 1
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Additive cocycle : Subshift of finite type

A Markov map (could be disconti-
nuous). The states space

1
A ={a,b,c}
c
L7 The transition matrix
b \\ 01 1
M=1|1 11
110
: 5 The Markov map is semi conjugated to
0L * © |1  theSFT

X ={ze AV : M(zy,z141) = 1, Yk}
Again the hyperbolicity of the Markov map is obtained because of
|f'(z)| > 1. Any C? perturbation still remaining Markov is semi

conjugated to (X, f)
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Additive cocycle : Subshift of finite type

Remark A SFT is hyperbolic in the following sense

° ifxg=yo, " ,Tp_1 = Yn—1 and x, # y, then

d(z,y) =e™", d(f(e), f(y) =e "D =eld(z,y)
= 0 is expanding

e if x and y are two configurations such that xy = yo and
c X3 —>T_9 —> T_1 — T,
are preimages of xy then the new configurations

= (x—lay()yyl’ - )
= ($727x717y03y1a .. )

A !

= (x_1,20,21,...) Y

1 1

T :(1‘72,.%'7173}0,.'1}1,...) Yy
are contracted

d@',y) = e td(z,y) d(=",y") = e ?d(z,y)
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II. Additive ergodic optimization on
hyperbolic spaces

Basic definitions again

® Minimal systems and Gottschalk-Hedlund

® Minimizing measures and Mather set

® An example of hyperbolic space : Subshift of finite type
® Lax-Oleinik operator and calibrated subactions

® Some extensions for Anosov systems
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Additive cocycle : Lax-Oleinik operator

Recall The ergodic minimizing value of ¢ can be computed using
measure

¢ = min { /¢ dp : p is an invariant measure }
Mather(¢) := U {supp(,u) : p is minimizing }

Definition An observable is nondefective from below if

n—1

VreX,Vn>0, Y ¢off(z)>nd+C
k=0

Theorem(Gottschalk-Hedlund) If (X, f) is minimal and ¢ : X — R is

n—1
continuous then : Sup‘ E d)ofk(xo)’ <400 = ¢=uof—u
n>1
21 k=0

Extension If (X, f) is minimal and ¢ is nondefective from below then

b=uof-u+o
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Additive cocycle : Lax-Oleinik operator
Main hypothesis The observable is Lipschitz (or Holder)

Vaz,y € X, z0 =yo, |¢(z)— ¢(y)| < Lip(¢)d(z,y)

Main result If (X, f) is a SFT, if ¢ : X — R is Lipschitz then there
exists a Lipschitz function u : X — R such that

(1) Ve € X, ¢(z) > uo f(z) —u(z)+¢
(2) Va € Mather, ¢(z) =uo f(x) —u(z) + ¢

Definition A subaction for ¢ is a continuous function u such that
Ve X, ¢(x) >uo f(z) —u(z) + ¢

Corollary ¢ is non defective from below

n—1
S 6o fi@) = uo f(@) — u(x) +nd = né — 2fullo
k=0

Corollary Every trajectory of the Mather set is optimal

n—1
x € Mather(¢) = ‘ Z (¢o fF(z)— @‘ < 2f|ullo
k=0
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Additive cocycle : Lax-Oleinik operator

Main tool The Lax-Oleinik operator is a (nonlinear) operator acting
on Lipschitz function u : X — R defined by

Tlul(y) := minfu(z) + ¢(z) : f(z) =y}

The transition matrix

—_— O O =
—

0
0
1
0

oo o

Assume ¢ is two-block :  ¢(z) = ¢(xg,x1)

It is enough to consider one-block function u(x) = u(xzg)
T[u](1) = min {u(1) + ¢(1,1),u(4) + ¢(4,1)}
T[u](2) = u(1) + ¢(1,2)
T'[u](3) = min {u(l) + #(1,3), u(2) + ¢2,3,u(3) + ¢(3,3), u(4) + ¢(4,3)}
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Additive cocycle : Lax-Oleinik operator

Definition The Lax-oleinik operator T : Lip(X,R) — Lip(X,R)

Tlul(y) := minfu(z) + ¢(z) : f(z) =y}

Theorem

(1) There exists a unique “additive eigenvalue” a and an (a priori
non unique) “additive eigenfunction” u € Lip(X,R) such that

Tul=u+a

(2) a = ¢ is the unique eigenvalue

(3) Every eigenfunction u is a subaction

¢(x) = uo f(z) —u(z) + ¢

Definition An additive eigenfunction of the Lax-Oleinik operator is
called a calibrated subaction
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Additive cocycle : Lax-Oleinik operator

The proof uses either the Schauder theorem or a more explicit
iterative scheme

Ishikawa’s Algorithm(Admitted) Let B be a Banach space, K C B
be a convex compact set, and T : K — K be a nonexpansive map

IT[w] = T[]|| < [lu— vl
Then the sequence

T
o €K, 1ty yq = Mnt Tltn]
2
converges to a fixed point.
Notation We will apply Ishikawa’s algorithm to
B:=C%X,R)/R with w~wu < u—v=const.
llull = inf{lu+ el : c € R}
K¢ := {u € B: Lip(u) < C} for some constant C
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Additive cocycle : Lax-Oleinik operator

Recall The Lax-Oleinik operator : X C AN, A ={1,...,r}

T[u](zo, x1,T2,...) = Elgienﬂ {(u+o)(x_1,20,21,...)}

Main observation Two points z,y € X starting at the same symbol
i9g = x9 = Yo € A have a common symbolic inverse branch which
contracts exponentially fast

To =Yoo = di_g =i 9 —i_1— 1
- = (i—na ey i1, L0, X1y - ')7 fn(x(in)) =z
y(_n) = (Zlfna o 7i717y07y17' . )

d(z=",y™) < Ad(2,y)

z(

forsome 0 <A<1 (A=e1)

Hyperbolicity The existence of such a contracting inverse dynamics
is the main observation for the existence of u
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Additive cocycle : Lax-Oleinik operator

Proof of the ergodic Lax-Oleinik’s theorem
@ we recall the definition

Thi(y) = min (u(z) + ()

® T commutes with the constants :  T[u+c] = T[u] + ¢

® T’ is nonexpansive :

ITTu] = Tollloo < [lu = vlloo

Jzx optimal, T[v](y) = v(z) + ¢(x)

Tlul(y) < u(z) + ¢(x)

Tlul(y) — T[v](y) < u(z) —v(z) < [lu -
T[ul(y) — Tlol(y)| < u(z) —v(@) < |lu—

y fixed
T'[u] is a min

substracting

Py

permuting
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Additive cocycle : Lax-Oleinik operator
Proof of the ergodic Lax-Oleinik’s theorem
@ T preserves the set : {u : Lip(u) < C} C = 1
choose y,y’ such that yo =y,
optimize T'[u](y’) : 3Ja', f(z’) =y such that
Tll(y) = u(@') + 6(z')
choose the same inverse branch : 3z, f(x) =y such that
d(z,2') < Md(y,y)
by minimizing T'[u](y) and substracting
[

Tlul(y) < u(z) + o(x)
Tlul(y) = T(ul(y') < (u+d)(x) — (u+ ¢)(x")

® we use now that ¢ is Lipschitz

T[u](y) — T[u](y") < (Lip(u) + Lip(¢))Ad(y, y")
Lip(T'[u]) < ALip(¢) + ;= Lip(¢) = = Lip(0)
Lip(T[u]) < C
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Additive cocycle : Lax-Oleinik operator

Proof of the ergodic Lax-Oleinik’s theorem

® we introduce the quotient space B := C°(X,R)/R
T acts on B because T' commutes with the constants
T preserves the set

A Lin(6)}

K:{ueB:Lip(u)gl

K is convex
@ By Ascoli’s theorem K is compact

® by Ishikawa’s theorem T admits a fixed point v in K :
there exists v : X — R Lipschitz and a € R such that

Tul=u+a
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Additive cocycle : Lax-Oleinik operator

Proof of the ergodic Lax-Oleinik’s theorem

® We show that a < ¢. For every z,y € X

@)=y = u(y)+a=Tlul(y) <u)+ ()
wo f(z) +a < u(r) + ¢(x)

we thus have proved that an additive eigenfunction is a subaction

uof—u+a<o

n—1
Vee X, uo f™(x) —u(z) + na < quo * )

k=0

a< lim mf—Zqﬁ offz)=¢

n—+ocozeX N
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Additive cocycle : Lax-Oleinik operator
Proof of the ergodic Lax-Oleinik’s theorem

@® We show that a > ¢. We choose arbitrarily a point 2(0) € X.
By optimality in the definition in Lax-Oleinik

u(y) +a=Tul(y) = f?;)igy{U(fE) + ¢(2)}

56V X, f@ ) =2®,  ue®) +a=u(@ D) + o)
Fo P e X, f(27Y) = 27Y, (@YY +a = u(z"?) + ¢(z?)
F2Y e X, f(2) =2, w(z) +a = u(@D) + p(27Y)

n

E d(2F) = w(@ @) — u(@™) + na
k=1
n—1
- ) .1 Z k o w(@©) —u(z) +na
— —_ < =
(b ngr—ﬁr-loo xlg)f< n o ¢ ° f (.’L‘) - nEr—&I-loo n ¢

Ph. Thieullen Introduction to Ergodic Optimization 59/101



Summary Introduction Additive cocycle Zero limit Discrete Aubry-Mather Bibliography
Additive cocycle : Lax-Oleinik operator

Corollary Let (X, f) be a SFT, let ¢ be a Lipschitz function
(1) there exits a Lipschitz subaction u : X — R

Voe X, ¢x) >uo f(r) —u(x) + ¢

(2) up to a coboundary, the ergodic minimizing value is a true
minimum

¢ =minx (¢) = ¢
Yi=¢—(uof—u) = {VeeX, ) >
Yz € Mather, 9(z) = v
Proof
® for every invariant measure / Ydu = / pdy = =¢
® as (¢ — ¢) > 0 and / (¢ — ¢) dp = 0 for i minimizing

Va € supp(u), ¥ =¢
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Additive cocycle : Lax-Oleinik operator

Corollary Every trajectory in the Mather set is optimal
n—1
Vx € Mather, sup ‘ Z po fF(x) - nqb‘ < 40
n2l1 7

Proof
@ for every minimizing measure p / (¢ —@)du =0
® there exists a subaction (¢ — 45) —(uof—u)>0
© [(6-3)~(of-udu=0

®p—d=uof—u puae.
® ¢ —d=uof—u everywhere on supp(u)

® |S(6— )0 @) = Juo f(@) — u(e)| < 2l on supp()
k=0
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- IIL
. Discrete Aubry-Mather and Frenkel-Kontorova model

Summary

Introduction
Additive ergodic optimization on hyperbolic spaces

Zero temperature limit in thermodynamic formalism

Contreras genericity of periodic orbits

. Towards multiplicative ergodic optimization
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III. Zero temperature limit in
thermodynamic formalism

Description of the BEG model

Gibbs measures of a directed graph

Ground states of a directed graph

® Zero temperature limit for a SFT

Explicit computations for the BEG model
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Zero limit : Description of the BEG model
Description The Blume Emery Griffiths model (BEG model)

+1 +1 +1 +1
AL ) Y
@

One considers a chain of atoms on a lattice at equilibrium at positive

temperature that interact with their first neighbours.

(1) Each site of the lattice hosts a unique atom

(2) there are 3 kinds of atoms ; either He* with spin up or down, or
an isotope He?® with no spin. Let A = {—1,0,1} be the 3 kinds of
atoms.

............ Wi

(3) a chain of atoms is an infinite sequence x = (xg)rez, Tr € A

(4) the interaction energy is short-range given by an Hamiltonian :
H:AxA—-R
(5) the energy of a finite block of atoms

m+n—1
H(Tpm, Tt 1y« oy Tonn) 2= Z H(xg, K11)

k=m
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Zero limit : Description of the BEG model
Hamiltonian in BGE H : A x A — R has the form

A
H(z,y) = —Jay — Ka?y® + (2% + %)

(1) 2,y e A={-1,0,1}
O (2) J > 0 = spins tend to be aligned
(3) K > 0 = spins tend to be neighbours
/ \ (4) A > 0 = role of a chemical potential
(5) directed graph with transition matrix

— =
— =

1
—J-K+A —J-K+A M= 1
Example of a computation

H(0,0)=0, H(-1,1)=J—-K+A,
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III. Zero temperature limit in
thermodynamic formalism

® Description of the BEG model

Gibbs measures of a directed graph

Ground states of a directed graph

® Zero temperature limit for a SFT

Explicit computations for the BEG model
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Zero limit : Gibbs measures of a directed graph
Formal notations
(1) A={1,2,...,r} : the possible state space of the atoms

(2) M : an r x r matrix with values in {0, 1} called transition matrix
M(i,j) =1 & a transition ¢ — j is allowed
(3) (X, f) : the bi-infinite subshift of finite type, f: X — X

X ={z= (v)rez :Vk €Z, 2y € A, M(2k,Tp11} C A”
f(@) =y = (Yr)rez, Yk EZ, yp = a1 11

(4) H: AxA— RU{+oc0} : the Hamiltonian of the system
describing the local energy between two successive atoms

H(i,j) = 400 < M(i,j) =0
(5) ¢ : X — R : the corresponding short rang interaction on the SFT
¢(x) = H(zo,71)
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Zero limit : Gibbs measures of a directed graph

Assumption The transition matrix (or the
graph) is irreducible : for every state 7,5 € A

Ji=iyg—ip —ig— - —ip=7

Definition We introduce a weight for each
transition

Mpg(i, j) := exp(—=BH(i, )

which should be proportional to the proba-

bility of the occurrence of the the transition
Remark

(1) B is supposed to be the inverse of the temperature T'
(2) Mjy is the initial transition matrix corresponding to 7' = 400

(3) M is the frozen state corresponding to 7' =0

Physical Ansatz The configurations prefer transitions with low
energy (— which explains the sign —SH)
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Zero limit : Gibbs measures of a directed graph

Definition A cylinder of size n is a set of configurations that have
prescribed states on n consecutive sites of Z. To simplify the
notations, the cylinder starts at 0. If 49, 41,...,4, € A then

[i0, 81y, in] == {x: (zk)kez € X 1 g = 4o, T1 =11,---,%n :z’n}

Definition The total energy of a block is
n—1
H(ig, ... in) = H(ix,ir41) ZqSofk . Y €lig, .. yin]
k=0

Definition A Gibbs measure at temperature 37! is an invariant
measure of the SFT (X, f) such that

15([io, - . ,in]) = exp ( — BH(ig, ..., in) + nﬁﬁﬁ)

exp(—nBHg) < Z exp ( — BH(igy .-y in) + nﬁﬁg)

[105+++yin]
admissible
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Zero limit : Gibbs measures of a directed graph

Theorem Let (X, f) be a SFT associated to an irreducible transition
matrix and H : A x A = RU {+00} be a two-step Hamiltonian. Then
there exists a unique Gibbs measure at every temperature 51
Recall M3(i,j) = exp(—BH (i, 7)).

Definition A non negative matrix M € Mat(R™,r) is said to be an
irreducible matrix, if Vi, j € {1,...,7}, there exists ig, i1, ..., i, with
ip = i and jo = j such that

M(ig,i1) Mg (i, iz) - M(in_1,in) > 0

Remember Mg(i,j) =0 < H(i,j) =+00 & i /4]

Perron Frobenius theorem If M is a non negative irreducible
matrix, then the spectral radius p of M is strictly positive and p is an
eigenvalue of multiplicity 1. Moreover the eigenvector associated to 1
can be chosen to have strictly positive entries
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Zero limit : Gibbs measures of a directed graph

Theorem Let (X, f) be a SFT associated to an irreducible transition
matrix and H : A x A — RU {+0c0} be a two-step Hamiltonian. Then
there exists a unique Gibbs measure at every temperature =1
Proof The Perron-Frobenius theorem tells us

® let Mg(i,j) = exp(—BH(i, 7)) be an irreducible r X r matrix

® let pg := exp(—BHp) be the largest eigenvalue

® let Rg(7) be the right eigenvector with strictly positive entries

O let Lg(i) be the left eigenvector with strictly positive entries

® we normalize so that : Yoi_i La(i)Rg(i) =1

The Gibbs measure at temperature S~1 of a cylinder is

1 ([ios - vin]) = plgLﬂ(iO)exp (= BHo,..-. i) ) Rsin)

We show that g is a well defined probability on X and is invariant
by the dynamics f
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Zero limit : Gibbs measures of a directed graph

Recall The Gibbs measure at temperature 3~ is defined by

oo in]) = = L(io) | [] Ma(ie.ixen)] Ro(Gn)
Ps k=0

Step 1 The measure is consistent in the Kolmogorov sense

~ o ENEEN - Rs(j)
D sl i) = sl ) [ ;an,y)&f@n)}

= p([io, - - ,in])

Step 2 The measure is invariant

Zug 1,00,y in]) =

~ Ls(0) o
[P,B Z L:(iO)M 5(4, Zo)}/ﬁﬁ([zo,,_.’ln])

= MB([ZOa cee ’Zn])
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III. Zero temperature limit in
thermodynamic formalism

® Description of the BEG model

Gibbs measures of a directed graph

® Ground states of a directed graph

® Zero temperature limit for a SFT

Explicit computations for the BEG model
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Zero limit : Ground states of a directed graph

Recall The Gibbs measure of a two steps cylinder is given by

uo (i) = L) =" =R(d), Mp(ig) = exp(=BH(i.))
where pg is the largest eigenvalue of Mg

Definition Let Hp be the free energy at temperature =1 defined by

pp := exp(—fHp)

Question What is the behaviour of the free energy Hz when the
system is frozen ?

Question What is the behaviour of the Gibbs measure pg when the
system is frozen ?
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Zero limit : Ground states of a directed graph

Proposition The free energy converges to the ergodic minimizing
value ¢

ﬁEImeﬁ—i—lanZHZj . 7)

=1 j5=1

where the infimum is realized over the set of probability measures p
on A x A satisfying the invariance property

VieA, pt sz k) :Zu(k,i) = 1@ (i)
k=1

Theorem The Gibbs measure g converges to a selected minimizing
measure Lm,qn, that is a probability measure satisfying the previous

invariance and S
i=1 j=1
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Zero limit : Ground states of a directed graph

Proof of Hg — H
@® we recall some notations A ={1,...,r}

Mg(i,j) = exp(—BH(i,])), pp = exp(—BHp)

® we choose another left eigenvector

VjeA Y La(i)Ms(i,5) = psLs(i), max Lg(i) = 1

i=1

® we change Lg to an exponential form
L (i) := exp(—pU3s(7)), m}n Up(i) =0

@ the eigenvalue problem becomes
vied S exp (= B(H(.5) ~ Hy— (Us() - Up(i) ) =1
i=1
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Zero limit : Ground states of a directed graph

Proof of ﬁg — H

@ we recall the new eigenvalue problem
vied Sexp (= B(H(.5) ~ Hy— (Us(j) - Up(i)) =1
i=1
@ first consequence
Vi— j €A, Us(j) + Hp < Ug(i) + H(i, j)

I _
VieA, JieA, og;r) +Up(j) + Hp > Up(i) + H(i, j)

@ second consequence, by irreducibility of the transition matrix,
and the fact that there exists ¢y € A such that Ug(ig) = 0, one

can find N >1
< j) < 0y -+ s in)—nH
0< mjax Us(j) < 12}?ng i:io—?}aﬁin:j (H(ig, ... in)—nHg) < 400

Hg and Ug(j) are uniformly bounded with respect to 3
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Zero limit : Ground states of a directed graph

Proof of H 8 — H
® Hpg and Us(j) are uniformly bounded with respect to 3

by taking a subsequence 8 — +00

lim Ug(i) = U lim Hz = H
Ghm 5(1) (4), aim H

® we recall

Vi—jeA, Us(j) + Hp < Ug(i) + H(i, j)
log(r) . _
3 >

@ passing to the limit 5 — +oo

VieA, dieA,

Vi j€EA, U()
VicA, JicA, Uy >
VieA, U(G)=min{U®G)+H(,j):ic A}
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Zero limit : Ground states of a directed graph

Conclusion We just have proved that Hg — H and Ug — U

TU)=U+H

TIUI(G) = _win (UG)+ HG.5)
We extend U as a function on the SFT X
u(@) =U(xo), == (Tr)rz0
We extend H as a function on X
¢(x) = H(zo, 1), = (zk)kz0

Then

Th=u+H

Thl(y) = min (u(a) +6(x))

By uniqueness of the additive eigenvalue
H=¢
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Zero limit : Ground states of a directed graph

Question Can we compute explicitly H ?

Proposition
(1) H equals the minimum of the mean energy over all simple cycles

(2) the minimizing measures are supported on the SFT made of
minizing cycles

order 1 H e {0,1}
The mean energy per cycle : order 2 He{0,1} H=0
order 3 | H e {0, 5

Ph. Thieullen Introduction to Ergodic Optimization 80/101



Summary Introduction Additive cocycle Zero limit Discrete Aubry-Mather Bibliography
Zero limit : Ground states of a directed graph

Proof
® We have shown the existence of a calibrated subaction U

Vi—jcA, U(j)+H<U(@G) + H(i,j)
Vioe.A, di_, € A, U(’Lo)ﬂ-H:U(Z,l)-’-H(’L,l,Zo)

® we construct a backward orbit that calibrates H

Fip = i_(n—1) = i1 =0
U(i_k) +H= U(i_k_l) + H(i_k_li_k)

® because the graph is finite the backward orbit closes up
Ip>1, iy =iy
@ by telescoping sum U disappears
H(icp—py.oyion—1,i-n) =pH
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III. Zero temperature limit in
thermodynamic formalism

® Description of the BEG model

Gibbs measures of a directed graph

Ground states of a directed graph

® Zero temperature limit for a SFT

Explicit computations for the BEG model
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Zero limit : Explicit computation for BEG
The BEG model

Mean of H along simple cycles :

//// \\ cycles of order 1 | 0, (—=J — K 4+ A)

cycles of order 2 | ZA, (J — K + A)

Cf I-K+A cycles of order 3 | £(J — K 4 2A)
—J-K+A —J-K+A

The energy matrix is

exp(—B(—=J—K+A)) exp(—B3A) exp(—B(J—K+A))
M3—|: eXp(—B(%A)) 0 eXp( 6(%A))
exp(—B(J—K+A)) exp(—pB(34)) exp(—B(—J—K+A))

We discuss the phase diagram according to the smallest term

A 1
min(O,E,—J—K+A,J—K+A,g(J—K—f—QA))
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Zero limit : Explicit computation for BEG

| (112) (1/4) (1/4)

1
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Summary

- 1. Introduction

- II. Additive ergodic optimization on hyperbolic spaces

- III. Zero temperature limit in thermodynamic formalism

- IV. Discrete Aubry-Mather and Frenkel-Kontorova model

V. Contreras genericity of periodic orbits

- VI. Towards multiplicative ergodic optimization
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IV. Discrete Aubry-Mather and the
Frenkel-Kontorova model

® The Frenkel-Kontorova model
® Calibrated configurations
® The algorithm
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Discrete Aubry-Mather : The Frenkel-Kontorova model

The physical model The model describes the set of configuration of
a chain of atoms at equilibrium in a periodic external environment

Elastic interaction

Periodic potential

The original 1D-FK
o EA,K(x,y):WA(xuy)+VK(‘T)’ .’E,yGR
1 A2 Kr
W, =—ly—x-A*-—, Vg(z)=
(2] )\(xay) 27_|y T | 97 K(x) 27‘()2

® E\x(r,y) =Eox(x,y) — ANy —x)

(1 - cos(27rx))

—~

Ph. Thieullen Introduction to Ergodic Optimization 87/101



Summary Introduction Additive cocycle Zero limit Discrete Aubry-Mather Bibliography

Discrete Aubry-Mather : The Frenkel-Kontorova model
Question Is it possible to define a notion of configurations
X := (k)kez, Tr € R, with the smallest total energy

+oo
Biot(x) := Y Bk, zp41) < Bror(y), V¥ = (Uk)yez

k=—o00

Definition A configuration (z,),cz is said to be minimizing if the
energy of a finite block of atoms with two fixed extremities cannot be
lowered by displacing atoms inside the block :

n—1
e define  FE(Tpm, Tma1y.--,Tn) i= Z E(xg, Trr1)
k=m

® if (Y, Ym+1,---,Yn) is another configuration with the two
endpoints fixed, y,, = x,, and y, = z,, then

E(xmvxm—i-l; .- .,l’n) < E(ymyym+1a cee 7yn)
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Discrete Aubry-Mather : The Frenkel-Kontorova model

Remark The notion of minimizing configurations is NOT correct.
Consider

Ex(z,y) == E(z,y) = A+ (y — 2)

(X is the distance between the atoms at rest). Then

(k) kez is minimizing for E\ < (zk)kez is minimizing for Ey

Proof

n—1 n—1

> (Eo(xk,xk+1) = AM@k41 — xk) = > Eo(@k, Tri1) = Man — 2m)
k=m k=m

Remarks

(1) minimal geodesics have a similar definition (X is a cohomological
factor)

(2) minimizing configurations look like local minimizers of some
functional energy. We need a stronger notion of global minimizers
that will be called calibrated configurations
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IV. Discrete Aubry-Mather and the
Frenkel-Kontorova model

® The Frenkel-Kontorova model
e Calibrated configurations
® The algorithm
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Discrete Aubry-Mather : Calibrated configurations

Definition The effective energy of a configuration is

n—1
) . . 1
E:= lim inf - ];) E(xg, rr1)

n=+00 gg,...,zn ERY

Remark
® The limit exists by super-additivity

® By coercitivity of E(z,y) : limjy_4 400 E(x,y) = +00
—o0o < inf E(z,y) <E< inf E(z,z) < +0
z€R

z,yeR
Definition
® The Mané potential between two positions z,y € R is

n—1

S(z,y) := inf inf . Z (E(zg, xp41) — E)

n>1r=x9,...,.Tn=
k=0

® & = (zk)kez is said to be calibrated if

n—1

Vm < n, Z (E(xk;,xk_l,_l) — E) = S(@m, zn)

k=m

Ph. Thieullen Introduction to Ergodic Optimization
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Discrete Aubry-Mather : Calibrated configurations
Question How to find calibrated configurations ?

The Lax-Oleinik operator For every periodic function v : R — R
Tlul(y) == inf (u(z) + E(z,y))

Remark
® By coercivity of F, the infimum is attained

® We have chosen an interaction energy satisfying
E(x+1ly+1)=E(z,y)
¢ In particular : u periodic = T[u] periodic

Theorem There exists a Lipschitz periodic function u : R — R
solution -

Tul=u+F
u is called effective potential. It is not unique. The additive eigenvalue
FE is unique
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Discrete Aubry-Mather : Calibrated configurations

Construction of calibrated configurations
® solve T[u](y) = u(y) + E = min, (u(z) + E(z,y))
® choose z € [0,1] and construct a backward optimal configuration

wr )+ E=ul@_j_1)+ E@_ 1,7 1)

® shift the finite configuration (zy + Ly,))__,,, by an integer L,, so
that z_,, + L,, € [0, 1]

O extract a convergent subsequence (x7°)kez by a diagonal
argument

@® the limit (27°)kez is calibrated
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Discrete Aubry-Mather : Calibrated configurations
Theorem Recall Ej(z,y) = Eo(x,y) — Ay — ), z=(k)kez
(1) z is minimizing for E) < z is minimizing for Ey
2

(2)
(3) A minimizing configuration is calibrated for some E)
(4) Recall

A calibrated configuration for F is minimizing

n—1

E(A) := lim inf 1 ZEA(xk,ka)
k=0

n—+o0o zg,...,.x, €ERT N

(5) A= E()) is a C! function
(6) A calibrated configuration for E) admits a rotation number

. T, — dE
lim 20— = -2
im w(A) o

n—+oo n

(7) Emergence of the locking phenomena at rational rotation number

Leb(R\ U interior{/\ eR:w(A) = §}> =0

p/q€Q
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IV. Discrete Aubry-Mather and the
Frenkel-Kontorova model

® The Frenkel-Kontorova model
® Calibrated configurations
® The algorithm
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Discrete Aubry-Mather : The algorithm
The 1D-FK model

Exk(z,y) = %Iy —z? = Ay —2) + é{TT)Q (1 - Cos(27rx))

Ishikawa’s algorithm
@ discretize the initial cell [0,1], z; = %, i=1,...,N
® choose a number of cells around the initial cell R > 1
® start with the zero potential ug = 0. Assume u,, is known
@ construct the optimal backward map

25 = (203, Pj) = arg[[m}i%nR]] (un(zl) + By k(2 +p, zj))
Zi, pel— 1,

® compute Lax-Oleinik
Tlun)(2;) = un(2r(;)) + Ex i (20(j) + Pr(j)» 25)
® use Ishikawa’s algorithm

Up + Tuy] . (U + Tug]
o Ty (1Tl
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Discrete Aubry-Mather : The algorithm

Ishikawa’s algorithm
@ stop the algorithm until max; |un+1(zi) - un(zz)| <e
® compute the backward minimizing cycle

io — il = T(iO)apl — i2 - T<i1)ap27 —

©® choose the smallest ¢ > 1 such that iy = 1o,
@© define p=p; + -+ pq

[es1]

@® the rotation number equals w = % = —

® the Mather set is the periodic orbit

=
Q|
>

Zigs Zigs ey Zig

Choice of the constants
e 7=1, N=1000, R=2,¢=1079
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Discrete Aubry-Mather :

001 Discrete weak KAM solution

0

ux)

-0.01

-0.02

-0.03
0 0.2 0.4 0.6 0.8 1
xr

A=0425 K =1
Nrsni = 188

E(\ K) = —0.067

The Mather = one periodic orbit
(red dots) of period ¢ = 7 and

rotation number w = 3/7.

Ph. Thieullen

Zero limit Discrete Aubry-Mather Bibliography

The algorithm

001 Discrete weak KAM solution

S,

0

-0.01

ux)

-0.02

-0.03
0 0.2 0.4 0.6 0.8 1
T

A=10.43394, K =1
Nispi = 1181

E(\ K) = —0.070614259

Mather set = two periodic orbits
of identical period ¢ = 39 and ro-
tation number w = 17/39

A grid of 2000 points shows a
unique period orbit with the same

period 17/39
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Discrete Aubry-Mather : The algorithm

Rotation number w = —%% Rotation number w = 2
1 1 o
08 0.8 i 3}/'15ﬁﬁ/f:
5/8 o 23— 7
06 06 i '
3 3 3/7 v
0.4 0af s =
2T ~
0.2 02 /° 5
0 ol
0 02 04 06 08 1 0 02 04 06 08 1
A A
Graph of the rotation number w = —L2Z(}) (lefthand side), and
(N g . O _ . .
w =205 (right hand side). The coupling is K = 1, the grid on A is

0:0.0005 : 1. The maximum number of iteration is 198, the maximum
jump is 1.286, the maximum number of cycles is 2.

Ph. Thieullen Introduction to Ergodic Optimization 99/101



35

Summary Introduction Additive cocycle Zero limit Discrete Aubry-Mather Bibliography

Discrete Aubry-Mather
3
25

: The algorithm

15

1
0.5
o ‘ ‘ ‘ ‘
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
A
rotation number w = £

0.5
Tq

A=0:0.001:0.5, K =0:0.01:4. Each domain is parametrized by a

Ph. Thieullen

Phase diagram of the Frenkel-Kontorova model : 7 =1, N = 400,

] (] = =
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